
RemBench, a Digital Workbench for Rembrandt Research Ȃ User guidelines

This document contains some guidelines for the use of RemBench. RemBench combines the

content of four different databases behind one search interface:

 RKDartists and RKDimages, two databases maintained by the Netherlands Institute for

Art History (RKD)

 RemDoc, a collection of original documents related to Rembrandt van Rijn from the

period between 1475 to circa 1750

 RUQuest, a library system that provides access to full text articles, as well as the

complete collection of (e-)books and journals from the Radboud University Library

Catalogue

RemBench does not influence the content of these databases. For questions or comments about

the information in the RKD databases, RemDoc or RUQuest, we refer to their own websites.

For any remaining questions about RemBench, you can contact Suzan Verberne,

s.verberne@let.ru.nl

1. General introduction
For a short introduction to RemBench see this instructional video:

2. Features of RemBench

Free text search

You can use this field for free text search. Note that:

 The information you are looking for might be in English or DutchǤ)f you donǯt get results
in one language you can try the same query in the other language (if you speak Dutch).

 The words in the query are interpreted separately: The query 'saskia brothers' gives

results about either Saskia, brothers, or both.

 If you want all results to be about brothers then change your query to 'saskia +brothers'.

 You can also use literal phrases: "two brothers"

 You can also use wildcards for flexible search: 'amsterd*'.

 Select the option ǮFuzzyǯ if you also want to find results for spelling variants of your queryǤ For exampleǡ the query Ǯtsjoudervilleǯ with the fuzzy optionǡ finds results for ǮJoudervilleǯ
 You can either use the return key or click the Search button to search.

http://explore.rkd.nl/
http://www.remdoc.org/
http://www.ru.nl/library/vm/ruquest/
mailto:s.verberne@let.ru.nl

Filtering

You can filter your results for Date, Location, Author/artist name, Artist/author type and

Content type.

 Click on ǮMoreǯ to see more values for a filter typeǤ)n the ǮMoreǯ screen you can sort the
values by name or frequency, and you can sort in the values.

 The meaning of the filters is as follows:

o Date: for works of art, the creation date (or date range); for artists: the years

between birth and death; for primary and secondary sources: the publication

date. Note that not for all records an exact date is known, so it is possible that

results are found that are not strictly within the date range that you provided.

o Location: for works of art and primary sources, the location (place) where the

work/source physically resides; for artists: places that are mentioned in his

record (birth place, place of death, places of activity); for secondary sources:

place where it was published.

o Author/artist name: for words of art, the name of the artist; for primary and

secondary sources: the author. No results for artists.

o Artist/author type: similarly as Author/artist name.

o Content typeǣ By selecting Ǯworks of artǯǡ all works of art are foundǤ By selecting Ǯpublicationsǯǡ all secondary sources are foundǤ)n additionǡ all works of art have a
subtype (painting, drawing, etc.); the same holds for primary sources all have a

specific type (court records, notarial acts, etc.) and secondary sources

(newspaper article, books/e-books etc.); no results for artists;

 View results

After entering a query and/or selecting filter values, results are shown for the four different databasesǤ)n each set of resultsǡ you can click ǮMoreǯ to browse through all retrieved resultsǤ You
can click on a result to see the page with selected details about the results. Each detail page also contains the link ȋǮPermalinkǯȌ to the original location of the data in the RKD databaseǡ RemDoc
or RUQuest.

Clear everything

Click on the refresh button to clear all fields and start a new search

Technical	Documentation	RemBench	

10 September 2014

1. Back End

JAVA

The RemBench backend was written in JAVA, and can roughly be divided in two parts: the Harvester

and the Search Server.

Maven2 (http://maven.apache.org/) was used as build/dependency system.

Harvester

The harvester queries the four external databases (RemDoc, RuQuest, RKDArtists, RKDImages)

periodically, converts the results to the RemBench format, and indexes these subsequently.

SearchServer

The index that was made by the Harvester can be accessed through the Search Server.

The Search Server was engineered as a REST Service:

http://en.wikipedia.org/wiki/Representational_state_transfer.

SOLR (http://lucene.apache.org/solr/) was used for the Full Text Search and the Faceted Search.

2. REST API

GET /application.wadl

Returns the (Jersey-generated) WADL document

(http://en.wikipedia.org/wiki/Web_Application_Description_Language) for the REST API

GET /details/{recordid}

Returns the details for the RemDoc record with the given recordid

POST /search

Executes a search, creates a searchresults object, returning the url of this searchresult in the Location:

header

parameters (mediaType="application/json; charset=utf-8"):

term (string): text to fulltext search for

fuzzy (boolean): set to true if you want the search to be fuzzy: slight variations of the term will

also be used in the search.

facetValues (array of name/values objects): the required values for selected facets (there is an

OR relation between the values per facet, and an AND relation between the different facets)

so for a search where facet "location" has values "Amsterdam" and "Rotterdam", and facet

"artist_name" has values "Rembrandt" and "Bol, Ferdinand", the search will be for records

where "location" is "Amsterdam" or "Rotterdam" and "artist_name" is "Rembrandt" or "Bol,

Ferdinand"

example:

{

"term":"saskia",

"fuzzy":true,

"facetValues":[

{

"name":"location",

"values":["Amsterdam"]

}

],

}

GET /search/{searchid}

Optional parameters:

- database - return only the results from this database (remdoc,ruquest,rkdimages,rkdartists)

- rows - return this amount of results

- start - start at this result

Returns a JSON map with:

- numFound : total number of records found

- facets : the facet values and counts for the RemBench facet fields

- results : the search result info, grouped per database

GET /version

Returns a JSON representation of some version information for the backend webapp.

3. Front End

Preprocessors

RemBench was written using preprocessors. Instead of writing direct HTML, CSS and JavaScript we

used:

• Jade (http://jade-lang.com),

• Stylus (http://learnboost.github.io/stylus),

• CoffeeScript (http://coffeescript.org).

Gulp

In order to avoid repetitive acts, a task manager was used. In the case of RemBench Gulp

(http://gulpjs.com)was chosen. Gulp ensures that preprocessing is automated and that a local Web

server is started.

Browserify

Using Browserify(http://browserify.org) has two advantages in the development of the Front End:

1. We can use Back End dependencies (Node);

2. All code is bundeled.

Backbone

RemBench is a so-called single-page application. That means that only one page is loaded and that

from that one page the whole app(lication) is available. For the structure of the app the Backbone

framework (http://backbonejs.org) is used.

Faceted Search

The most important library that is used in RemBench is the Faceted Search that was developed by

Huygens ING. (https://github.com/HuygensING/faceted-search). The Faceted Search enables the user

to filter the search results.

